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Abstract

In this paper, we first discuss computational experience using the SRI up-
date in conventional line search and trust region algorithms for unconstrained
optimization. Our experiments show that the SRi is very competitive with
the widely used BFGS method. They also indicate two interesting features:
the final Hessian approximations produced by the SRI method are not gener-
ally appreciably better than those produced by the BFGS, and the sequences
of steps produced by the SRI do not usually seem to have the "uniform linear
independence" property that is assumed in some recent convergence analysis.
WXe present a new analysis that shows that the SRi method with a ine search
is n+1 step q-superlinearly convergent without the assumption of linearly in-
dependent iterates. This analysis assumes that the Hessian approximations
are positive definite and bounded asymptotically, which from our computa-
tional experience are reasonable assumptions.

1-

I-.j
Ii

tV



1. Introduction

This paper is concerned with secant (quasi-Newton) methods for finding a local minimum
of the unconstrained optimization problem

min f(x). (1.1)xER"

It will be assumed that f(x) is at least twice continuously differentiable, and that the
number of variables n is sufficiently small to permit storage of an n x n matrix, and
O(n 2 ) or possibly 0(n 3 ) arithmetic operations per iteration.

Algorithms for solving (1.1) are iterative, and the basic framework of an iteration of
a secant method is:

Given current iterate x , f(x,), Vf(x ) or finite difference approximation, and
B, E R ' n symmetric (secant approximation to V2f(x,)):

Select new iterate x+ by a line search or t"ist region method based on quadratic
model rn(x, + d) = f(x,) + Vf(x,)Td + _dTBcd.
Update B, to R+ such that B+ is symmetric and satisfies the secant equation
B+s, = Yc, wh.re s, = x+ - x, and y, = Vf(x+) - Vf(xz).

In this paper, we consider the SRI update for the Hessian approximation,

(y, - B ~s,)(y: - Bcsc)T(B+ = B, + (1.2)

and, for purpose of comparison, the BFGS update

+ T (1.3)YC YC SC YC

For background on these updates and others see Fletcher [1980], Gill, Murray, and
Wright [1981]. and Dennis and Schnabel [1983].

The BFGS update has been the most commonly used secant update for many years.
It makes a symmetric. rank two change to the previous Hessian approximation Bc, and
if Bc is positive definite and sTyc > 0, then B+ is positive definite.

The BFGS method has been shown by Broyden, Dennis, and .Mor6 [1973] to be locally
q-superlinearly convergent provided that the initial Hessian approximation is sufficiently
accurate. Powell [1976] proved a global superlinear convergence result for the BFGS
method when applied to strictly convex functions and used in conjunction with line
searches that satisfy the conditions of Wolfe (1968]. The BFGS update has been used
successfully in many production codes for unconstrained optimization.

The SRI formula, on the other hand, makes a symmetric rank one change to the
previous Hessian approximation B,. Compared with other secant updates, the SRi up-
date is simpler and may require less computation per iteration when unfactored forms
of updates are used. (Factored updates are those in which a decomposition of B, is

lpdatfd ,, each iteration.) A basic disadvantage to the SRI update, however, is the
ract that it. doininator may be zero or nearly zero, which causes numerical instability.
A ,,iAt, rrnodv to this probleur is to set P+ = B, whenever this difficulty arises, but
this r11;1v pr-vovt fast convergonc,. Anoth,,r problem is that the Sil update may not
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preserve positive definiteness even if this is possible, i.e., when Bc is positive definite and
S. Y- > 0.

Fiacco and McCorinick [196S] showed that if the SRI update is applied to a positive
definite quadratic function in a line search method, then, provided that the updates are
all well defined, the solution is reached in at most n + 1 iterations. Furthermore, if n + 1
iterations are required, then the final Hessian approximation is the actual Hessian at the
solution. This result is not trile, in general, for the BFGS update or other members of
the Broyden family, unless exact line searches are used.

For nonquadratic functions, however, convergence of the SRI is not as weU understood
as convergence of the BFGS method. In fact, Broyden, Dennis, and Mor6 [1973] have
shown that under their assumptions the SRI update can be undefined, and thus their

vergnce analy.sis can not bc ... case. Also. no global convergence result
similar to that for the BFGS method given by Powell [1976] exists, so far, for the SRI
method when applied to a non-quadratic function.

Recent work by Conn, Gould, and Toint [1988a, 198Sb, 1991] has sparked renewed
interest in the SRI update. Conn, Gould, and Toint [1991] proved that the sequence of
matrices generated by the SRI formula converges to the actual Hessian at the solution
V2f(x.), provided that the steps taken are uniformly linearly independent, that the SRi
update denominator is always sufficiently different from zero, and that the iterates con-
verge to a finite limit. (Using this result it is simple to prove that the rate of convergence
is q-superlinear.) On the other hand, for the BFGS method Ge and Powell [1983] proved,
under a different set of assumptions, that the sequence of generated matrices converges
but not necessarily to V 2f(X.).

The numerical experiments of Conn, Gould, and Toint [19SSb] indicate that minimiza-
tion algorithms based on the SRI update may be competitive computationally with meth-
ods using the BFGS formula. The algorithm used by Conn. Gould, and Toint [19S8b] is
designed to solve problems with simple bound constraints, i.e, 1i :_ xi <_ ui, i = 1, 2,..., n.
The bound constraints are incorporated into a box constrained trust regio:, strategy for
calculating global steps, in which an inexact Newton's method oriented towards large
scale problems is used. This method uses a conjugate gradient method to approximately
solve the trust region problem at each iteration. and also incorporates a new procedure
that allows the set of active bound constraints to change substantially at each iteration.
In this context, Conn. Gould, and Toint [19S8b] conclude that the SRI performance is, in
general, somewhat better than the BFGS in terms of iterations and function evaluations
on their test problems. They point out that the use of a trust region removes a main
disadvantage of SRI methods by allowing a meaningful step to be taken even when the
approximation is indefinite. They also point out that the skipping technique used when
the SRI denominator is nearly zero was almost never used in their tests, They attribute
part of the success of the SRI to the possible convergence of the updates to the true
second derivatives as discussed above. In Conn, Gould, and Toint [1991], they tested
this convergence using random search directions. These tests showed that, in comparison
with other updates such as the BFGS, the DFP, or the PSB. the SRI generates more
accurate Hlessian approximations.

Th- purpose of this paper is to better understand the computational and theoretical
properties of the, SI? I update in the context of basic line search and tru.st region methods
for un rori t ra i ,,d opti izati on. In the next section. we present computational resrilts we
obtaim,,d for th,, SiI and th,, BVQS iehods using standard line .-'arch and trust region
al, ,orithmz for s nrall to m Pdiim sized linconstrained opt!nization prohlems. Ve a)
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report on tests of the convergence of the sequence of Hessian approximation matrices,
{Bk}, generated by the SRI and BFGS formulas, and of the condition of uniform linear
independence of the sequence of steps which is required by the theory of Conn, Gould,
and Toint [1991]. These results indicate that this assumption may not be satisfied for
many problems. Therefore in Section 3, we prove a new convergence result without the
assumption of uniform linear independence of steps. Instead, it requires the assumption

of boundedness and positive definiteness of the Hessian approximation. In Section 4,
we present computational results regarding the positive definiteness of the SRI update,
and an interesting example. Finally, in Section 5 we make some brief conclusions and
comments regarding future research.

2. Computational Results and Algorithms

In this section, we present and discuss some numerical experiments that were conducted
in order to test the performance of secant methods for unconstrained optimization using
the SRI formula against ihose using the BFGS update.

The algorithms we used are from the UNCMIN unconstrained optimization software
package (Schnabel, Koontz, and Weiss [1985]) which provides the options of both line
search and trust region strategies for calculating global steps. The line search is based on
backtracking, using quadratic or cubic modeling of f(x) in the direction of search, and the
trust region step is determined using the "hook step" method to approximately minimize
the quadratic model within the trust region. The frameworks of these algorithms are
given below.

Algorithm 2.1 Quasi-Newton method (Line Search)

Step 0 Given an initial point x0 , an initial positive definite matrix B0 , and a = 10-4, set
k (iteration number)= 0.

Step 1 If a convergence criterion is achieved, then stop.

Step 2 Compute a quasi-Newton direction

Pk = -(Bk + PkuI)-Vf(xk)

where P1k is a nonnegative scalar such that f4 = 0 if Bk is safely positive definite,
else Yk > 0 is such that Bk + JikI is safely positive definite.

Step 3 {Using a backtracking line search, find an acceptable steplength.}

(3.1) Set Ak 1.
(3.2) If f(:Tk+l) < f(Xk) + aAkVf(xk) T pk, then go to Step 4.

(3.3) If first backtrack, then select the new Ak such that Xk+l(Ak) is the local min-
imizer of the one-dimensional quadratic interpolating f(xk), "f(xk)Tpk, and
f(xk + p.) but constrain the new Ak to be > 0.1, else select the new Ak such
that X +± (Ak) is the local minimizer of the one-dimensional cubic interpolating
f(X), Vf(Xk)Tpk, f(Xk+1(Aprcv)), and f(xk+(A2pw,,)) but constrain the new
Ak to be in [0.1Apre,:. 0.5Apre,,.].
Xk+ I(A) = .rk + Ap, and AprT, A2prrv = previous two steplengths.)

(3.1) Go to (3.2).



Step -1 Set Xk+i = Xk + AkPk.

Step .5 Comp,,te the next Hessian approximation Bk+1.

Step 6 Set k = k + 1, and go to Step 1.

Algorithm 2.2 Quasi-Newton method (Trust Region)

Step 0 Given an initial point x0 , an initial positive definite matrix Bo, an initial trust
region radius A0 , rh E (0, 1) and 172 > 1., set k = 0.

Step 1 If a convergence criterion is achieved, then stop.

Step 2 If Bk is not positive definite set Bk = Bk+pkI where ilk is such that Bk = B +PtkI
is safely positive definite, else set B)k = Bk.

Step 3 {Compute trust region step by hook step approximation.}
Find an approximate solution to

Min Vf(Xk)Ts + lSTkS subject to JIs1l < Ak
sER 2--

by selecting
Sk = -(Bk + VkI)-lVf(Xk), Vk > 0

such that JIsk!I E [0.75Ak, 1.5Ak], or

Sk = -Bk- Vf(Xk),

if IB1-k'Vf(xk)ll < 1.5Ak.

Step 4 Set aredk = f(xk + sk) - f(Xk).

Step 5 If aredk < 10-Vf(xk) T sk, then
(5.1) set Xk+1 = Xk + sk;

(5.2) calculate predk = Vf(xk)Tsk + 1sTBkSk;
aredk aredk

(5.3) if a k < 0.1, then set Ak+ 1 = Ak/ 2 , else if pred- > 0.75, then set -Ak+1
predk predk

2Ak, otherwise Ak+1 = Ak;

(5.4) go to Step 7;

Step 6 else

(6.1) if relative steplength is too small, then stop; else calculate the Ak for which
Xk + Ak.sk is the minimizer of the one-dimensional quadratic interpolating
f(Xk), f(Xk + sk), and Vf(xk)Tsk; set new Ak = )'kfskll, but constrain new

Ak to 5e between 0.1 and 0.5 times current Ak.

(6.2) go to Step 3.

Step 7 Compute the next Hessian approximation. Bk+l.

Step S S,'t k = k + 1. and go to Step 1.



Procedures for updating Ak in Step 3 of the line search algorithm are found in Algo-
rithm A6.3.1 of Dennis and Schnabcl [1983]. While a steplength Ak > 1 is not considered
in the reported results, in our experience permitting Nk > 1 makes very little difference
on these test problems. Procedures for finding Vk in Step 3 of the trust region algorithm
are found in Algorithm A6.4.2 of Dennis and Schnabel [1983], and are based on Heb-
den [1973] and Mor6 [1977]. In both algorithms, the procedure for selecting Ak in Step
2 is found in Gill, Murray, and Wright [1981]. (They give an algorithm for finding a
diagonal matrLx D, such that Bk + D is safely positive definite. If D = 0, then ik is set
to 0, else an upper bound b, on Pk is calculated using the Gerschgorin circle theorem,
and k is set to Min{b,b 2 } where b2 = max{[D]ii, 1 < i < n}.) In our experience, when
Bk is indefinite, Uk is quite close to the most negative eigenvalue of Bk, so that the
algorithm usually finds an approximate minimizer of the quadratic model subject to the
trust region constraint.

Both algorithms terminate if one of the following stopping criteria is met.

(1) The number of iterations exceeds a given upper limit.

(2) The relative gradient, max ][Vf(X,)]il max{I[xk+l]iI, 1} is less than a given1<i<I, max{If(Xk+l)I, 1} i
gradient tolerance.

(.3) The relative step, max is less than a given step toler-l < i <n Ma x -- -k +l l, Q

ance.

All the algorithms used B0 = I.

2.1. Comparison of the SR1 and the BFGS Methods

Using the above outlined algorithms, we tested the SR1 method and the BFGS method
on a variety of test problers selected from Mor6, Garbow, and Hillstrom [1981] and from
Conn, Gould, and Toint [1988b] (see Table Al in the appendix.) First derivatives were
approximated using finite differences. The gradient stopping tolerance used was 10- 5,

and the step tolerance was (machine epsilon)1/ 2 . The upper bound used on the number
of iterations was .500. As done in Conn, Gould, and Toint [1988b], we skipped the SRI
update if either

ST(yk - Bsk)I < rIJskIIIlYk - BkSklIl,
where r = 10- s , or if !IBk+ - BkI > 108. The BFGS update was skipped if sTyk <
(machine epsilon)'/')lsklll 1I. All experiments were run using double precision arith-
metic on a Pyramid P90 computer that has a machine epsilon of order 10-16 .

For each test function, Tables A2 and A3 in the appendix report the performance
of the SRI and BFGS methods using line search and trust region respectively. The
t. hlr' contain the number of the function as given in the original source (see Table Al),
the dimension of the problem (n), the number of iterations required to solve the problem
(itrn.), the number of function evaluations, (f-eval.), required to solve the problem (which
includes n for each finite difference gradient evaluation), and the relative gradient at the
solution (rgx). The last column (sp) indicates whether the starting point used is xO.
lOx), or 100 O. where x0 is the standard starting point.

In order to cornpare the performance of the two methods with respect to the number
of iterations and the nunber of function evaluatioihs req iired to soixe iese problems.
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we consider problems solved by both meiluds and calculte the ratio of the mean of the
number of iterations (or function evaluations) required to solve these problems by the
SRI method to the corresponding mean for the BFGS method. Table 1 below reports the
ratios of these means, using both arithmetic mean and geometric mean. These numbers
indicate that on the set of test problems we used, the SRI is 10% to 15% faster and

cheaper than the BFGS method.
Table 2 gives the number of problems where the SRI method requires at least 5, 10,

20, 30, 40, 50 iterations less than the BFGS method, and vice versa. This table, which
is based on numbers from Table A2, also indicates the superiority of the SRi on these
problems.

Table 1: Ratio of SRI Cost to BFGS Cost
Mean Line Search Trust Region

Itrn. Function Evaluations Itrn. Function Evaluatior.s
Arithmetic 0.82 0.83 0.$4 0.88
Geometric 0.$3 0.$5 0.84 0.92

Table 2: Comparisons of Iterations
Line Search Trust Region

Iteration- Different 5 10 20 30 40 50 5 10 20 30 40 50
SRI Better 26 20 13 10 7 I 3 27 20 11 9 5 1
BFGS Better 7 5 2 2 1 1 8 6 3 1 1 1

2.2. Error in the Hessian Approximation and Uniform Linear Independence

In an attempt to understand the difference between the SRI and the BFGS, we tested
how closely the final lessian approximations produced by the line search and trust region
SRI and BFGS algorithms come to the exact Hessians at the final iterates. Recall that
the Hessian error for the SRi is analyzed by Conn, Gould, and Toint (19911 under the
assumption of uniform linear independence which we redefine here.

Definition .A sequence of vectors {Sk} in R ' is said to be uniformly linearly independent
if there exist C > 0, k0 and m > n such that. for each k > ko, one can choose n distinct
indices k < k1 < ... < k, < k + m such that the minimum singular value of the matrix
Sk= [5, / Iik1  .... ,sk.1/lsk ] is >_ .

Using this definition, Theorem 2 of Conn, Gould, and Toint [1991] proves the follow-
ing.

Theorem 2.1 (Conn, Gould, and Toint [1991]) Suppose that f(x) is twice continuously
differentiable everywhere, and that V 2f(x) is bounded and Lipschitz continuous, that is,
there exist constants .11 > 0 and ,, > 0 such that for all r, y E R ' ,

IlV' 2-rf(.r)1 < .j a,,d 1r- 2 r 7'-v f(Y)I < "' X - Y11.



Let Xk+i = Xk + Sk , where {Sk.} is a uniformly linearly independent sequence of steps.
and suppose that Hrn {Xk} = X. for some x.cR'. Let {Bk} be generated by the SRI

formula

Bk+1= Bk+ Ok- BkskJ(Yk. - Bksk )T

= Bk +k - Bksk)

where BO is svmmetric, and suppose that Vk > 0, Yk and Sk satisfy

IST(y BkSk)I rIJ-skIIJYk -Bks5kII, (2.1)

for some fixed r E (0, 1). Then limi JJB- V 2 f(X.)Il =0.
k-.oo

W~e now present some computational tests to determine to what extent such Hessian
convergence occurs in practice. For these tests we used analytic gradients and a gradient
stopping tolerance of 10-10 and computed the quantity

JIBI - V'f(xj)tI/11JV"f(xi)jl,

where xj is the solution obtained by the algorithm, and BI is the Hessian approximation
at rj. These results arc reported in Tables A-1 and A5 in the appendix and summarized
in Tables 3 and 4 below. Tables 3 and 4 list for each method, the number of problems
fur which Ijj _ V 2f(X1)If/ijIV 2f(X,)Ii lies in a given range.

Table 3: -Numiber of Problems with JIB, - V'f(x,)jJ/IIV'f(x)I in Indicated Range (Line
Search Methods)

I 10 1~, 10-3) (10-, '10 ) (10-2, 10-1) [10-1, 1) > I
SRI 4 3 2 8 3 8

CSL0 110 1 6 88

Table 4: Number of Problems with IIB-V 2 f X,)iI/liT1 f(.1,)II in L~ctC, i11,,C Tu
Region Methods)

<10-4 [104, 170- [10-3, 10-1) [10-1, 10-') [10-1, 1) 1
S5 0 O 4 5 4 10

BEGS 1 0 0 5 7 7 9

While the SRI seems to produce slightly better final approximations than the BFGS.
there is no evidence fromn these tables that it significantly outperforms the BEGS with
respect to convergence to the actual Hessian at the solution. Also. in a good number of
cas.i-, noither miethod come-, close to the correct Hessian.

The lack of convergence of the SRI Hessian approxiimations to the correct value in
rianv" of theso, prolons may appear to conflict with the analysis of Conn, Gould anid
'T I t [1991, givomi in Theorem 2.1. In fact, thero are two p)ossible explanations for
Ii is appadremit con ict.: either the algorithmi has not ccjnver-ed closoly enough for the

fin~~d comiverg-once of iliP mmmirices to be, ;pp1rnt ( tlh;- ;, hard to test in finite pr(m,. on
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ar ino'tic) or ;, n assumoptionI of Thooroiii 2.1 mnust he violated. The two asuit ) in of

Thloxreiii 2.1 t hat could possibly be invalid are that the denomninator of the SRH.I is nlot

too small (2.1)1. and the, uniform linear indlependence condition. In oiir experiments, (2.1)

was violated at most once for each test problem, and so this assumptioi, does not appear

to be a problem in the SR, method. Thus, we decided to test whether the uniform linear

indopen Jence condition is satisfied for thlese probletns.
Since the uniform linear independence condition would be very hard to test due to

the freedomn to choose rn and 7-, we have tested a weaker condition. For each value
7- 10-', 1i 1.2-.. we computed the number of steps (say mn) required so that the

sinallest singular value of the matrix, Sm, composed of the final normalized m steps of the

a lgorithri, is > 7 (Sm = 11: , .Sj_ I/ [s1j_ !I . S. .. (m..1)!~.. .1] where 771 > n)
Tables A6 and A7 contain the results of these experiments, which are summarized in

fa-bles .5 andl 6 below. '-" entry in Tables A6 and A7 means that the smallest singular
vI-, i < -, even if all the iterates are used.
Thevse results indicate that the uniform linear independence assumption does niot svem

to hold for all problems;, especially those with large dimensions. Therefore in the next
s ction we develop a convergence result for the SRI method that does not make this

Table 5: Number of ProblemTs where mi(S.,)> 7 for rn/n in Indicated Range,. - Line
soarcli SRI Nletiod _______________________

77/7 in

7_ 1,_ [l2 [2. 3) [3 - 4 [4 -5) [5 -10) _Never

10-1 7 1 ~ 3 3 6 1 8
10-2 12 1 0 3 .5j
10-8 1  12 1 0 4 4j 71

Table 6: -Number of Problems where ami,(Sm) > r- for rn/n in Indicated Range. -Trust

Re-ion SRI Method__________

rn/n in

7 1.2) (2.3) I[3- -4) 1[4 -5) [.5- 10) Never
10-1 41 3 0 3 6 12

10-2 12 1 0) 3 .
105 1,3 0 0~ 31 _5 _7

3. Conivergence Rate of the SRi Without Uniiformi Liear Indepen-
dence

Ai wa,- indicated at the end of the previous section, the condition of uniformn linear

inld~rpe1iloiico of the Soeqlirico {. m uder which Conn, Gould, and Toint [1991] analy'%z,,

t'l p'orfor inl;,i co of[ the Sil Imentho 110 ay be too str ong in p ract ice. Thlerefore in this
0,(-Ioil v.'. mcrIsrlor the (-ollVe1rgeii(-e raIte Of the SR 1 iethiod withouit til, coridionm. We



wiII showv t hi; it we drop thle rcondition of uniiformi lineair in dependence Of { k) buit add
n~ ead t0'o azsuinpjt ion that thle sequence { Th } remains positive definite wind bouindled.
U on lie lne search A lg.oritbi 2.1 generates at least p q-superhnear steps out of every

nPp stps This will enable us to prove that convergence is 2n-step q-quadratic.
'The banic Okha behind our proof is that, if any step falls close enough to a subspace

spannied b# mu K n recent steps, then the Ifessian approximation must be quite accurate
in t his subspace. 'Thus, if in adldition the step is the full secant step - BZ_ I Vf ( xk), it
dio(-uld be a supcerhlnvar step. But in a lie search mnethod, for the step to be the fuill
secant stop. 1B, must he positive definite, which accounts for the new assumption of
positive dei nit ,'ness of Bk at thle good steps. In Section 4 we wvill show that empirically

his assim:rpti on seemis very sonudl. although coulnterexam ples are possible.
Thbroug hiout this section the following assumptions will frequently be miade:

A ss uip tio us

:,i The function f has a local minimizer at a point . such that V 2 f(X..) is positi ve

eintand its esinV 2 f( x) is Lipschitz continuous near x., that is, there ex"ists
a coi~st ait -,> 0 such that for all r, y in sonmc neighborhood of X.,

10)- Vivo~j A Wl -- yl.

3,2 1 Ui. reqionci {xk converges to the local ininiirizer x.

We ffirst state the followvin'g result. due to Conn, Gould. and Toint [1991]. which does not
as;s': no Ii nm r independence of the step directions and which will be used in the proof of

11,x 1,111-11ti a.

Lemima 3.1 Let {xk} be a sequence of iterates def'ined by xk~l = k ± Sk. Suppose that
Assiumiptionis :3.1 and 3.2 hold, that the sequence Of iWatrices {Bk} is generated from {rk}

by the SRI update. andh that for each iteration

-jy B00 ?j ) rfl~skHIlYk - Bk~skK (3.1)

wnero r is a constanit E (0. I) Then, for each j. Pjy1 .s 11 =7± s 0. and

Km "S - B 2j ( 2 +I j2 11sl (:3.)

for all i > 2. wxhere q,, max{Kxp - x,11 I j < s < p : i}. and -fis the Lipschitz
constant fromn Assuiniptionl 3.1.

Actuiallyv. it is appa reiit froni thle proof of Lemmia 3.1 by Conn, G~ould, anid Taint
that, if the update is skipped whlomver (3.1) is violatcdi. theon (:3.2) still, hold,' fur all j
fu)r .klid [ 3.1 i is t rue.

fit the 1c n eow. we show that if thle sequenice of steps generated by an iterative

pro'~ ~iilthoi SR 1 ipdato~ satinie (3.1 ). aind thle sequence of matrices ish mde
tl:ii ot of ar ivse of ti c~1 tops,' at least one, is very good. As in thle previous 1crmia.

(:(INir')u WA. , ililv no-,! univ hold ait this set o)f n + 1 steps, as long as the update
i r tlvt f-r.; i"I *''U ~Iiif l'

I (



Lemma 3.2 Suppose the assumptions of Lemma 3.1 are satisfied for the sequences {xk}
and { 13h} arid that in addition there exists Al for which 11Bkll <_ -M1 for all k. Then there
exists KC > 0 such that for any set of it + I steps S = {sk i : K < k1  " k, 4 1 } there

exists an index k,, with m {2, :3... :t + 1} such that

- - /.
11-1- 11< CES

and

4 ,+ ,/7 + ) k + M + Iv2(x)I .
r (

Proof. Given , for j 1,2,..., n + I defin,

[ Sk, Sk, Sk l1I6kI i1 ' 11-5k2, 11 " " , I I] "

W, %ill first show that _Em E [2, n + 1] such that sk,/lK ! 11 Sm-i u - w, S,-i has

fiiUl column rank and is well conditioned, and 1w1l is very small. (In essence either
ru = n + 1. Sm-1 spans n-space well, and w = 0, or m < n + 1, S,-i has full rank and
is well conditioned, and sk, is nearly in the space spanned by Sm-i.) Then, using the
fact that (1k.,_ - V -f(x.))Sm_ is small due to the Hessian approximating properties of
the SRI update given in Lemma 3.1 above, and that w is small by this construction, we
will have the desired result.

For j {1, .. , n}, let rj be the smallest singular value of Sj and define 7,+l = 0.
Note that

l ri_>7 2 ...>Tn + =0

Let in be the smallest integer for which

7m 1/ n- < i (3.3)
Tm -

Thon since m < n + 1 and -1.

Tm1 TM-2

(m-2)/n

> E-/ (3.4)

Since, X -- X. we may assume without loss of ge-ierality that cs E (0, (1)') for all
k. ,;,. we choo,- - E R" such that

I ll I-,!-1.( .
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where u E R'-'. (The last component of z is nonzero due to (3.3).) Let w Smz. Then,
from the definition of S, and z,

Sk, Su - w. (3.6)

Since r,,-_l is the smallest singular value of Sm-I we have that

IIU I 1 IS , ull

I 1 < - IIS ., -, l

Tm -11 I1 k

"(1 + IU11I

Tm- I ["

By~ (3.4) this implies that

Hull1 < (I-l7 rl (3.8)

/n

Also, using (3.5) and (3.7), we have that

I1 ,112 < II2 2l2

+ T E(1 + 1Iull2)

Therefore, since (3.3) implies that Tm K E3
1 , using (3.3),

11w112 < E / + E7./'(llwll + 1)2

< 42/"(pwqJ + 1)2. (3.9)

This implies that

I1l11(1 - 2E/') < 2c/n

and hence, I1wil < 1, since es < (1)'. Therefore, (3.8) and (3.9) imply that

IIUI < 2 (3.10)

(n- 1)/n
ES

11ll < < 4 •s' (3.11)

This gives the desired result that w is small, as well as a necessary bound on Ilull.
Now we show that ll(Bk, - V 2 f(xo))Sj_,i1, j E [2, n + 1], is small. Note that this

result is independent of the choice of j. By Lemma 3.1 we have that

IIY - BkJ.,11 < 2 + I
rr

2 92 + ) 1s.l (3.12)

12



for all i E {ki, k,, kj- 1 . Also, letting

-i = V~f(xj + tsi)dt,

we have

Gii= j71 "f (xi + tsi)sidt

=Vf (xi+1) -V f(xi)

=Yi,

and by the Lipschitz continuity of V'f(x),

IIyj - V'f(x.)sII = II(Gi _ V2f(X.))S,I

f j(V'f (xi + ti) - V'f (x.)sdtjj

< I1sill ]o IIV2f(xj + tsi) - V'f(x.4Ildt

< -YI13il j 1xi + ts, - xIdt

5 -yIsil!ks, (3.1:3)

where -y is the Lipschitz constant. Therefore, using the triangle inequality, and (3.12)
arid (3.13) we have

fl(Bk, - V 2 f(x.)) 'i 11 :51(yi - Bk,) Si1 +1ls AX) ili
Pil f2c+) S, I I + l(-S Vfx.)

-y (22 +k -+lkl

where c (2 I + 1~ +-j,2 and hence for any j E [2, n+ 1]
r \r

II(Bk, - V2f(X.))Sj..1Il <5 v'(2c + -y)e.5. (3,14)

Finally, using (3.6), (3.14) witP - = m, (3.11) and (3.10) we have that

11B_- V'f(X-))Skj~ = I(Bkm- _ V 2 f(X.4)(Sm._iU _-)I

Il~~ k-11 ~ < ll(Bkm - V2f(X,.))Sm..IljjjUl _ 1111jjj j+ llBkm - V, 2f(X.)lji
* ljujjv'Y(2c + -I)Es + II wII(llBkm I + 1~~~i
* (n2 1)/ l(2c + 7y)cs

+ 4/(,3J.' + llv2f (x-'flD

* v c + ,)+ ,11 + IIV2f(X.)II] c V/

fit ordler to use this lonima to establish a rate of convergence we need the following,
res iit which is closely related1 to thle well-known siiperlinear convergence charzicte('fiil ion)
of De usand Nlor,, [19714].



Lemma 3.3 Suppose the function f satisfies Assumption 3.1. If the quantities ek =

IIXk - x.11 and [ .(Bk - V'f(X))skll are sufficiently small, and if Bksk = -Vf(xk), then

lk + Sk -- '1 < H1V2f(x.)- 1 1 [-2 I(Bk - V'f(X-))skII ek + e ]

Proof. By the definition of sk

V 2 f(x-)sk = (V 2 f(x.) - Bk)sk - Vf(xk)

so that

Sk = -(xk-x*)+V 2f(x.) - l [(V2f(x.) - Bk)sk - Vf(xk) + V 2 f(x.)(xk - x)]. (3.15)

Therefore, using Taylor's theorem and Assumption 3.1,

-11 1(,2 X )2 2(3.16)
I1xk - X. + Skfl _< IIVf(x)-l[ I(V2f(x - Bk)skI + 2 k(1

Now it follows from (3.15) that if 11V2 f(x.)-1 _V(Bk v 2f(x)sl,/lskI then by

Taylor's theorem,
3 117(. -1 1 1 X

iIskJH < [I[lxk - X-11 + _IV2f(x.)-II-ixk - z.112] < 21xk - X-1,

if ek is sufficiently small. Using this inequality together with (3.16) gives the result. [

Using these two lemmas one can show that for any p > n, Algorithm 2.1 will generate
at least p - n superlinear steps every p iterations provided that Bk is safely positive
definite, which implies that Bk is not perturbed in Step 2 and ilk = 0. In the following
theorem, this is proved and used to establish a rate of convergence for Algorithm 2.1
under the assumption that the sequence {Bk} becomes, and stays, positive definite. In
a corollary we show that this implies that the rate of convergence for Algorithm 2.1 is
2n-step q-quadratic. As we will see in the next section, our test results show that the
positive definiteness condition is generally satisfied in practice. We are assuming here
that if Bk is positive definite, then it is not perturbed in Step 2, i.e., we are assuming
that "safely positive definite" just means positive definite.

Theorem 3.1 Consider Algorithm 2.1 and suppose that Assumptions 3.1 and 3.2 hold.
Assume also that for all k > 0,

I'S (,k U - Bks.)1 > rII-sqkJlly k- BkSkil,

for a fixed r E (0, 1), and that 3.11 for which IIBkIl _ A! Vk. Then, if 3hIo such that Bk

is positive definite for all k > K'o, then for any p 2 n + 1 there exists A' such that for
all k > A',.

ek+p < e/n (3.17)

whore ,a is a constant anf( ri is defined as I1.rj - x.11.
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Proof. Since V 2f(x.) is positive definite, there exists A'l, /31 > 0 and /32 > 0 such that

/31[f(xk) - f(x-)] < IIxk - x-11 __ )32[f(xk) - f(x.)] (3.18)

for all k > K1. Therefore, since we have a descent method, for all I > k > K1 , IIxi-x.II _
I I xk- x11. Now, given k > K, we apply Lemma 3.2 to the set {Sk, Sk+1,. .sk+

Thus, there exists 11 E {k + 1,. .. ,k + n} such that

II(Bll - V 2 f(x.))stjj1 < e(3ek)"'. (3.19)js II,l\ i /(.9

(If there is more than one such index l, we choose the smallest.) Equation (3.19) implies
that for IIxh -x.I1 sufficiently small, by Theorem 6.4 of Dennis and Mor6 [1977], Algorithm
2.1 will choose Ah = 1 so that x 1, = xj, + sj1 . This fact, together with Lemma 3.3 and
(3.19), implies that if ek is sufficiently small then

eh+, <_ e/ el (3.20)

for some constant &. Now we can apply Lemma 3.2 to the set

{Sk, Sk+1,. •., k+n, Sk+n+l } - {;l, }

to get 12. Repeating this n - p times we get a set of integers 11 < 12 < ... < la-,, with
1 > k and lp-n < k + p such that

1/nel,+, < &ek eti (3.21)

for each Ii. Now letting hj = [f(Xj) - f(x)]2, since we have a descent method,

h j+l < hj, (3.22)

and using (3.18) we have that for our arbitrary k > K 1,

1
li+l1

< T,- k el,
32 1/n< -2ixe, hl. (3.23)

for i = 1.2,.... p - n. Therefore using (3.22) and (3.23) we have that

hk+p: (6102 e /n)p hk

which, by (3.18) imphes that

ek+p< \ k e .

Therefore.
<)P p-n+l

Ck+p - ek

awl 3.17 follows. m]
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Corollary 3.1 Under the assumptions of Theorem 3.1 the sequence {k) generated by

Algorithm 2.1 is n + I-step q-superlinear, i.e.,
ek+n+l --*0,

ek

and is 2n-step q-quadratic, i.e.,

lim sup ek+2 < 0C.
k--c e2 -

Proof. Let p = n + 1, and p = 2n in Theorem 3.1. C]

Note that a 2n-step q quadratically convergent sequence has an r order of (V2)
Since the integer p in the theorem is arbitrary, an interesting, purely theoretical question
is what value of p will prove the highest r-convergence order for the sequence. It is not

hard to show that, by choosing p to be an integer close to en, the r order approaches1 1

ed ; 1.44 for n sufficiently large, and that this value is optimal for this technique of

analysis.

4. Positive Definiteness of the SR1 Update

One of the requirements in Theorem 3.1 for the rate of convergence to be p-step q-
superlinear, is that the sequence {Bk} generated by the SRI method be positive definite.
Actually, the proof of Theorem 3.1 only requires positive definiteness of Bk at the p - n

out of p "good iterations." In this section, we present computational results to confirm
that in practice, the SRI method generally satisfies this requirement.

In Table AS in the appendix, in the fourth column, we report for each iteration
whether Bk is positive definite or not. The 5th column reports the percentage of iterates
at which the SRI update is positive definite, and the 6th column contains the largest
number j for which all of BB(J_ 1).... B, are positive definite, where B, is the Hessian
approximation at the final iterate. The results of Table A8 are summarized in Table 4,
which indicates that the SRI formula was positive definite at least 70% of the time

on every one of our test problems. In light of this, and since Theorem 3.1 really only
requires positive definiteness at the "good steps" (at other steps all that is needed is that
f be reduced), chances that superlinear steps will be taken at least every n steps by the
algorithm seem good. Another way of viewing this is that, we know from Theorem 3.1
that out of every 2n steps, at least n will be "good steps" so long as B1k is positive definite
at these iterations. Thus, if for example Bk is positive definite at 80% of these 2n steps,
at least 30% of the 2n iterates must be "good steps."

Table 7: Percentage of Iterations with Bk Positive Definite

70 1 70 1[70, 90)1 [M0,90) [90, 100) 100]
problems 10 .3 12 6 .5

Wo also tested the denorninator condition that

'1.57k- B001 )I> rI[.sk jlb Bk- ks.
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where r = 10- 8 using standard initial points. The last column in Table AS, which reports
the number of times this condition was violated, indicates that this condition rarely is

violated in practice. This finding is consistent with the results of Conn, Gould, and
Toint [1988b].

Finally we present an example that shows that it is possible for a line search SRI
algorithm to fail to have Bk positive definite at all iterations, and to converge linearly to
the minimizer x.. This shows that the assumptions of Theorem 3.1 cannot be guaranteed
to hold. We then consider the same example in a trust region SRI algorithm, and show
that it does not suffer from the same problems. This leads us to feel that it may not be
necessary to assume {Bk} positive definite in order to prove superlinear convergence for
a trust region SRI method.

Example 4.1 Let

f(x) = xTX, XO= and Bo [2 0'0

where o- < 0. At the first iteration, the algorithm will compute

[ i+0 0 1- _ (X
l = Xo- 0 a+ VJ(o)= l+6 o

for some 6o > -o, and accept this point as the next iterate. The SRI update will produce
yo - Bose = 0, so that B, = B0 . The remaining iterates proceed analogously, so that for

each k, Bk = B 0 and
bk

Xk+1 = Xk
1T+ 6k

for some 6k > -a, meaning that the rate of convergence is no better than linear withjoj
constant 1+1,71"

It is interesting to consider the behavior on the same problem of a trust region SRI
algorithm that exactly solves the problem

min Vf(xk)T. + 1s Bks subject to [[s[l < Ak (4.2)
sERI 2

at each iteration. If there exists Po such that B0 + pol is positive definite and jj(Bo +

po1)-I'Vf(xo)l = Ao, then as in the line search method, x, = '0 x0 and B1 = B0 .

Since aredo =predo, the trust region radius is not decreased. Thus eventually at some
iterate k, we must have ll(Bk + pkI)-'Vf(Xk)ll < Ak for all Pk > -Ak, where Ak < 0 is
the smallest eigenvalue of Bk. In this case the solution to (4.2) is the step

Xk+1 = Xk - (Bk - AkI)+Vf(xk) - i'e 2

- Xk - X k -Ve2

for a v - 0 that makes Il.s.i = Ak. (Here e2 = (0, 1)7 is the eigenvector of Bk
corresponding to the negative eigenvalue.) It is then straightforward to verify that

Y.- - Bk., = V( - I )r. Bk+1 = I - VXf(r) an xk+2 = X-.

17



A practical trust region algorithm will not solve (-1.2) exactly, but any algorithm that
deals with the "hard case" (when I(Bk - AkI)+Vf(xk)t < Ak) well, such as algorithms
of Mor6 and Sorenson [1982], will have the same effect. That is, at some point it will set

Xk+1 = Xk - (Bk + Pki)- Vf(Xk) - vk

where Vk is a negative curvature direction for Bk. This implies that v Te 2 7 0, which in
turn leads to Bk+1 = I and Xak+ 2 = x,. Thus the trust region method has the ability,
for this example, to correct negative eigenvalues in the Hessian approximation. This
indicates that it may be possible to establish superlinear convergence of a trust region
SRI algorithm without assuming a priori either strong linear independence of the iterates
or positive definiteness of {Bk}. This issue is currently under investigation.

5. Conclusions and Puture Research

We have attempted, in this paper, to investigate theoretical and numerical aspects of
quasi-Newton methods that are based on the SRI formula for the Hessian approximation.
We considered both line search and trust region algorithms.

We tested the SRI method on a fairly large number of standard test problems from
Mor6, Garbow, and Ilillstorm [1981], and Conn, Gould, and Toint [1988b]. Our test
results show that on the set of problems we tried, the SRi method, on the average,
requires somewhat fewer iterations and function evaluations than the BFGS method
in both line search and trust region algorithms. Although there is no result for the
BFGS method concerning the convergence of the sequence of approximating matrices to
the correct Hessian like the one given by Conn, Gould, and Toint [1991] for the SRI,
numerical tests do not show that the SRi method is more accurate than the BFGS
method in this regard. One reason for this, as indicated by our numerical experiments,
is that the requirement of uniform linear independence that is needed by the theory of
Conn, Gould, and Toint [1991] often fails to be satisfied in practice.

Under conditions that do not assume uniform linear independence of the generated
steps, but do assume positive definiteness and boundedness of the Hessian approxima-
tions, we were able to prove n + 1-step q-superlinear convergence, and 2n step quadratic
convergence, of a line search SRi method. We also gave numerical evidence that the SRi
update is positive definite most of the time, and that one of the potential problems of
the formula, that of the denominator being zero, is rarely encountered in practice.

An interesting topic for future research that was mentioned in Section 4 is the con-
vergence analysis of a trust region SRI method, again without the assumption of uniform
linear independence of steps. It is possible that the assumption of the positive definite-
ness of the Hessian approximations, which we showed is necessary and sufficient to prove
superlinear convergence in the line search SRI method, may not be necessary to prove
superlinear convergence for a properly chosen trust region SRi algorithm.
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Apnendix

Table Al: List of Test Functions Numbers and Names.

Number Dimension Name

MGH05 2 Beale Function.
MGII07 2 Helical Valley Function.
MG1109 3 Gaussian Function.
MGH12 3 Box 3-Dimensional Function.
MGt 14 3 Wood Function.
MGH16 4 Brown and Dennis Function.
MGt18 4 Biggs Exp6 Function.
MG 1120 6 Watson Function.
MG H21 9 Extended Rosenbrock Function.
MG1122 10 Extended Powell Singular Function.
MG1123 10 Penalty Function I.
MG1124 10 Penalty Function II.
MGt125 10 Variably Dimensioned Function.
MGH26 10 Trigonometric Function.
MGH35 9 Chebyquad Function.
CGT01 8 Generalized Rosenbrock Function.
CGT02 25 Chained Rosenbrock Function.
CGT04 20 Generalized Singular Function.
CGT05 20 Chained Singular Function.
CGT07 8 Generalized Wood Function.
CGTO8 8 Chained Wood Function.
CGT1O 30 A Generalized Broyden Tridiagonal Function.
CGT1l 30 Another Generalized Broyden Tridiagonal Function.
CGT12 30 Generalized Broyden Banded Function.
CGT14 30 Toint's 7-diagonal generalization of Broyden Tri-

diagonal Function (see Toint 1978).
CGT16 30 Trigonometric Function (Toint, 1978).
CGT17 8 A Generalized Cragg and Levy Function.
CGT21 30 A Generalized Brown Function.

MGII: problems from Mor6, Garbow, and Hillstrom [1981].
CGT: problems from Conn, Gould, and Toint [1987].
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Table A2: Iterations and Function Evaluations - Line Search

Function n BFGS SRI sp
itrn. f-eval rgx itrn. f-eval rgx

MGtt05 2 16 58 0.7E-06 14 52 0.lE-05 1
MGII07 3 26 141 O.4E-05 30 142 0.4E-06 1
MGII09 3 5 34 0.3E-05 3 26 0.2E-07 1
MGH12 3 35 157 0.5E-06 21 99 0.6E-06 1
MGIII4 4 32 186 0.7E-05 26 160 0.5E-05 1
MGH16 4 31 183 0.1E-05 21 133 0.3E-07 1
MGtH18 6 43 336 0.2E-05 37 302 0.6E-06 1
MGH20 9 95 1020 0.2E-05 46 532 0.8E-05 I
MGH21 10 34 461 0.9E-05 34 462 0.3E-05 1
MG1122 8 45 464 0.7E-05 36 382 0.4E-05 1
N1GH23 10 135 1604 0.9E-05 204 2377 0.6E-05 I
MG1124 10 25 358 0.7E-05 25 362 0.8E-05 1
MGII25 10 16 259 0.7E-06 16 259 0.7E-06 1
MG1126 10 27 374 0.3E-05 27 375 0.2E-05 1
MGH35 9 25 320 0.2E-05 25 320 0.3E-06 1
MGH05 2 47 154 0.3E-07 41 1.39 0.1E-06 10
MGH07 3 29 136 0.6E-06 38 175 0.4E-07 10
MGtH09 3 20 98 0.1E-05 17 102 0.3E-06 10
MGtf12 3 66 286 0.5E-05 55 259 0.5E-05 10
MGH14 4 58 316 0.6E-05 69 379 O.1E-06 10
MGtI16 4 59 322 0.3E-05 37 212 0.1E-05 10
MGttI8 6 45 361 0.3E-05 46 369 0.1E-05 10
MGtI20 9 95 1020 0.2E-05 46 532 0.8E-05 10
MGH21 10 57 775 0.3E-05 60 813 0.4E-07 10
MG1122 8 88 977 0.9E-05 67 793 0.3E-05 10
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Table A2 (continued)
Function I BFGS SRI sp

itrn. f-eval I rgx itrn. 1 f-eval rgx
MGH23 I 10 177 20S0 0.9E-05 192 2235 0.9E-05 10
M G12.5 10 41 5:35 0.3E-05 2:3 337 0.3E-05 10
MGt[26 10 72 876 0.7E-05 43 560 0.9E-06 10
MC;1197. j3 31 174 0.11E06 23]11 OEO 100
MGtII4 4 1S 625 0.5E-06 10.4 567 0.5E-05 100
MH;lIi6 4 89 472 0.2E-05 55 303 0.3E-06 100
MG1120 9 9.5 1020 0.2E-05 46 5:32 0.SE-05 100
NGI[21 10 1.58 2185 0.SE-05 154 1906 0.5E-06 100
MGff22 8 129 1227 0.4E-05 90 875 0.9E-05 100
MGH25 101 472 .5276 0.1E-0-t 335 3769 0.1E-04 100
CGIOI 8[ 71 707 0.5E-0.5 81 8413 0.4E-06 1
CGT02 25 36 131.5 0.7E-05 43 1505 0.6E-05 1
CGT04 20 8.5 20-19 0.9E-05 49 1291 0.5E-05 I
CGTO5 20 311 6797 0.8E-05 180 ,4055 0.9E-05 1
CGT07 8 129 1273 0.3E-05 116 1132 04E-06 1

CGTO.S 8 1-1 13-48 0.5E-05 140 1:347 0.1 E-05 1
CGTO j 30 58 J 2328 0,9E-05 40 1770 0.7E-05 1
CGTlI 30 37 1686 0.3E-05 32 1.526 O.SE-05 1
CGT12 30 26.1 8734 0.6E-05 199 6734 0.5E-05 1
CGT14 30 70 2699 0..5E-05 100 36-10 0.9E-05 1
CGTI6 10 11 203 0.4E-05 11 204 0.2E-05 1
CG'I i7 S 13-1 1269 0.SE-05 92 892 0.3E-05 I
CGT21 20 12[ 504 0.2E-05 11 j 483 0.3E-09 1
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Table A3: Iterations and Function Evaluations - Trust Region

Function n _ BE.GS J SRI sp
itrn. f-eval rgx itrn. f-eval rgx

NIGIlo.5 I2 1.5 57 0.3E-06 16 68 0.5E-05 I
M G 110 7 3 27 133 0.1E-05 29 150 0.E-06 1 1
-MG1109 3 .5 38 0.3E-05 3 31 0.2E-07 1
MC;1_, 31 32 150 O.3E-05 26 146 O-SE-05 1
NIc;H if -  46 265 OAE-07 31 2-17 0.5E-05 1
MG'IIb 1 4 33 IS S 0.1E-0 20 1:38 0.7E-0.5 I
M; 43IS 3-11 0.9E-05 40 3-.1 O.SE-05 I

NGH2t) 9 0 0.3E-05 46 .584 0.3E-0.5

NIG112 1 10 .12 .5.55 0.2E-05 49 671 0.2E-06 I
N IGIt22 S .1 T 42S 0.6E-05 26 294 0.SE-05
.IG112 1 10 21 3-1.1 0.2E-05 24 3.57 0.3E-05 1
NIG If25 i10 14 F 236 0.6E-05 14 236 0.6E-05 1
NIG 1126 10 "27 F 373 0.2E-0.5 24 3.49 J 0.1E-0.5 I

M GI1:1:.-) 9[ 2- :o30 .lE-oS 21 2.5 0.3E-0 5 I
NIG 1105 1 2 14 160 0.9E-05 36 147 0.9E-06 10
MIGIIo 1 :3 29!) 14i 0.1E-o.5 13 17 1 0.E-0.5 10
MG10O :3 21 112 0.8E-05 15 84 0.9E-0.5 10
MIGH 12 3 62 292 i 0.9E-06 F 19 122 0.7E-05 10
NGIII I 1 82 --. 3 0.61-0(; 71 467 0._E-06 10
MGI1I6 - 59 32 1 0.51"-0i 35 222 0.SE-07 10
MG IIIS 6 39 L 323 0.5E-05 51 437 0.6E-07 10
MG 1120 1 9 -S, 9.57 o.AE-0" -16 15-I 0.3E-05 10

C112 1 10 i 6 1 7 .s03 -300 0.2E-05 10
MGtI22 's 9-1 1 913 0.5L-05 .56 .57.5 0.3E-0., 10
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Table A3 (continued)
F Inctiolfl n BFGS SRi sp

itrn. f-eval rgx itn. f-eval rgx
MG1123 10 22 337 j 0.41:-05 113 1335 O.SE-05 10
\1C;H124 10 224 2609 0.1E-01 2.5:3 3140 0.1E-04 10
\IGH25 10 36 -S8 j 0.7E-05 25 371 0.3E-0.5 10
-(N 1 2 10 87 104-0 0.,E-05 48 6.50 0.1E-05 10
%IGC HOT 3 334 iss 0.2E-05 22 11S 0.2E-05 100
.GI 14 4 j .5 471 0.1E-005 69 426 0.3E-0.5 100

I.IGH16 1 4 89 472 0.4E-06 52 311 0.1E-01 100
NIG120 9 88 957 0.3E-05 46 58-1 0.3E-05 100
I M(;fI21 110 165 1911 0.2E-05 1-19 2139 0.3E-06 100
MG1122 S S 116 1127 0.SE-05 80 840 0.2E-05 100
CGTOI S .58 584 0.7E-05 ] 80 S -18 0.E-05 I
CGT02 25 45 1550 OAE-05 46 1.597 0.2E-0.5 1
CGTO4 20 110 2.579 0.3E-05 89 219.5 0.5E-05 Ii
CGT05 201 323 7048 0.5E-05 156 3645 0.SE-0.5 1
CGT07 1 123 1190 ] 0.4E-05 139 1429 0.3E-06 1
CGTos s 1 130 125.5 0.9E-05 1.16 152-1 0..5E-05 1i,
CGT } 30 58 2326 0.9E-05 42 18:32 0.7E-0 5 1
CGTI 1 :30i :35 1619 0.3E-05 31 149:3 0.5E-05 1
CGT12 30 62 21.51 0.SE-05 4-1 1916 0.5E-05 1
Cc; TI 1 53 1.582 0.SE-O5 29 1452 0.5E-05 I
CGT16 I 10 1 i 204 0.-E-05 11 206 0.3E-05 I1
CGTI7 Is8 8:3 818 0.9E-05 7- 802 0.SE-0.5 1
CGT21 120 12 504 0.2E-0.5 11 1 485 f0.3E-091 1
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Table A4: Testing Convergence of {Bk} to V 2 f(x.) - Line Search
Function n BFGS SRI

itr ] 11t - Bu11/I11iI1 itr 1111 - B131l/IltHi
MGt05 2 19 0.458E-04 16 0.686E-05
MGII07 3 28 0.274E-04 33 0.175E-06
MG1109 3 9 0.918E+00 4 0.918E+00
MGII12 3 38 0.545E-04 24 0.147E-03
MGI{1-1 4 35 0.830E-02 29 0.15-E-04
NIGH16 - 34 0.928E-01 23 0.348E-04
MGtI1 8 6 47 0.234E+01 40 0.234E+01
MGH20 9 175 0.105E+00 100 0.264E-02
MGtI21 10 3.5 0.80-IE-01 3-1 0.645E-01
MG1122 8 74 0.161E+01 49 0.160E+01
MCH23 10 178 0.167E+04 215 0.167E+04
MG1124 10 348 0.177E-01 330 0.140E-03
MGH25 10 16 0.748E+04 16 0.748E+04
MG1126 10 31 0.689E-01 31 0.468E-01
MGH35 9 28 0.834E+00 26 0.833E+00
CGTO1 8 73 0.393E-01 83 0.144E-01
CGT02 25 43 0.570E-01 50 0.317E-01
CGT04 20 500j 0.133E+04 500 0.133E+04
CGT05 20 500 0.582E+03 500 0.503E+03
CGT07 8 138 0.691E-01 124 0.111E-01
CGTO8 8 147 0.425E-01 146 0.492E-02
CGT1O 30 150 0.13-tE+03 8-1 0.195E+03
CGT11 30 44 0.781E-01 37 0.448E-01
CGT12 30 273 0.384E+00 210 0.691E-01
CGT14 30 86 0.279E+00 107 0.303E+00
CGT16 10 18 0.466E-01 16 0.385E-03
CGT17 8 216 0.-162E+00 125 0.566E-01
CGT21 20 16 0.124E+01 12 0.120E+01
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Table A5: Testing Convergence of {Bk.} to V 2 f(x.) - Trust Region
Function n BFGS SRI

itr IlhI - Btfl/ljjl itr 11HT - B1]]/lHII
MGII05 2 17 0.235E-02 18 0.102E-05
MGt107 3 30 0.-400E-02 31 0.172E-05
MGL09 3 9 0.918E+00 4 0.918E+00
MGIt12 3 36 0.396E-02 30 0.-173E-02
MG1l4 4 47 0.216E-02 41 0.290E-05

MGH16 4 36 0.809E-01 22 0.369E-04
MGH1S 6 47 0.23-tE+01 40 0.234E+01
MGH20 9 157 0.261E-01 99 0.176E-02
MGH21 10 47 0.999E±00 51 0.999E+00
MGH22 8 77 0.277E+01 43 0.276E+01

MGH23 10 .500 0.154E+04 149 0.218E+04
MGH24 10 2S7 0.391E-02 202 0.173E+02
MGH25 10 15 0.103E+05 15 0.103E+05
MG1126 10 31 0.906E-01 28 0.234E-01
MGH35 9 28 0.880E+00 23 0.880E+00

CGTO1 8 61 0.110E+00 81 0.275E-01
CGT02 25 51 0.228E+00 50 0.107E+00
CGTO.1 20 500 0.314E+04 500 0.248E+04
CGTO.5 20 500 0.104E+04 500 0.671E+03
CGTO7 8 122 0.35-IE-01 138 0.579E-02
CGTO 8 138 0.532E-01 139 0.405E-04
CGTIO 30 115 0.109E+03 82 0.112E+03
CGTIl 30 40 0.982E-01 34 0.690E-01
CGTI2 30 97 0.770E+03 66 0.756E+03
CGTI4 30 46 0.220E+00 40 0.1GOE-01

CGT16 10 16 0.523E-01 15 0.298E-02
CGT17 8 200 0.250E-O00 123 0.117E-01
CGT21 20 16 0.124E+01 12 0.120E+01
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Table A6: Testing Uniform Linear Independence of {Sk} - Line Search

f(x) n Itr. No. of steps so that ai,(Sm)* >
10-1 10 - 2 10-3 10-4 10-5 10-6 10-7 10-6

MGII05 2 16 3 2 2 2 2 2 2 2
Gt107 3 33 4 3 3 3 3 3 3 3

MGH09 3 4 * * * * * * * *

MGH12 3 24 14 5 3 3 3 3 3 3
MG114 4 29 10 5 5 4 4 4 4 4
MGH16 4 23 6 4 4 4 4 4 4 4
MGIl8 6 40 * * * * * * * *

MGH20 9 100 71 70 67 64 63 62 61 60
MGtI21 10 34 * * * * * * * *

,NIGH22 8 49 * * * * * * * *

MG1123 10 215 77 77 77 77 77 77 77 77
MG1124 10 330 79 79 79 79 79 79 79 79
MGH25 10 16 * * * * * * * *

MGI126 10 31 30 16 10 10 10 10 10 10
MGH35 9 26 * * * * * * * *

CGTO 8 83 26 15 13 13 13 13 13 13
CGT02 2.5 50 47 28 25 25 25 25 25 25
CGT04 20 500 87 87 87 87 87 87 87 87
CGTO5 20 500 87 87 87 87 87 87 87 87
CGT07 8 124 76 76 76 42 34 34 34 34
CGT08 8 146 45 45 45 45 45 45 45 45
CGTlO 30 84 * * 60 34 30 30 30 30

CGTli 30 37 35 33 30 30 30 30 30 30
CGT12 30 210 98 98 88 88 88 88 88 88
CGT14 30 107 59 36 36 36 36 36 36 36
CGT16 10 16 11 10 10 10 10 10 10 10
CGT17 8 12.5 67 45 42 34 34 34 34 34
CGT21 20 12 * * * * * * * *

• SmI =I.w. ,'here m > n.
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Table A7: Testing Uniform Linear Independence of {sk} - Trust Region

f(x) n Itr. No. of steps so that Omin(Sm)* >
lO-1 10-2 10-3 10-4 10-5 10-6 10-7 10-11

MGH05 2 18 3 2 2 2 2 2 2 2
MGl07 3 31 5 3 3 3 3 3 3 3
MGH109 3 4 * * * * * * * *

MGIf12 3 30 7 6 5 3 3 3 3 3
MGH14 4 41 8 5 4 4 4 4 4 4

MGH16 4 22 5 4 4 4 4 4 4 4
MGH11S 6 40 * * * * * * * *

MG1120 9 99 75 64 63 62 62 61 61 61

MGH21 10 51 * * * * * * * *

MG1122 8 43 * * * * * * * *

MG1123 10 149 77 77 77 77 77 77 77
MGH24 10 202 79 79 79 74 74 74 74 74
MG1125 10 15 * * * * * * * *

MG1H26 10 28 26 18 10 10 10 10 10 10
MGH35 9 23 * * * * * * * *

CGTO1 8 81 32 17 13 12 12 12 12 12
CGT02 25 50 * 29 26 25 25 25 25 25

CGT04 20 500 88 88 88 88 88 88 88 88

CGTO.5 20 500 88 87 87 87 87 87 87 87
CGT07 8 138 76 76 50 43 41 41 41 41

CGTOS 8 139 41 41 41 41 41 41 41 41
CGTIO 30 82 * 59 36 32 30 30 30

CGT11 30 34 * 31 30 30 30 30 30 30

CGT12 30 66 * 60 40 31 30 30

CGTI-I 30 40 1 33 30 30 30 30 30 30

CGTI6 10 15 12 10 10 10 10 10 10 10( CGT17 S 123 73 I 49 39 34 33 33 33 33
CGT21 20 12 * I * * * * * * *

S .where m > n.
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Table A8: Testing Positive Definiteness - Line Search

f(x) n Itr. 0: Indefinite ; 1: Positive Definite %pd 1* 2*
MGH05 2 14 1111111111111 1.00 13 1
MGH07 3 30 11111101111011110111111111111 0.90 12 1
MGH09 3 3 11 1.00 2 1
MGH12 3 21 11111111111111111111 1.00 20 1
MGH14 4 26 1111111101111110111110111 0.88 3 1
MGH16 4 21 10111111111111111111 0.95 18 1
MGH18 6 37 111111100111111111111111011111111111 0.92 11 1
MGH20 9 46 1111011111111111011111011101101111110

11111011 0.84 2 1
MGII21 10 34 111011111110111101001111111111111 0.85 13 1
MGII22 8 36 11111101011111111111111110111111111 0.91 9 1
MG1123 10 204 111111111111111111101111111111101111

111011101101101001101001111011110111
111111011010001111100111111101110011
111101011111101111010100110101111110
111101101111111010011011101111011001
11111011111101111110111 0.77 3 0

MGH24 10 25 111111101110111110111111 0.88 6 1
MGH25 10 16 111111111111111 1.00 15 0
MGH26 10 27 11101110111011101101110111 0.77 3 1
MGH35 9 25 111110110111110111111111 0.88 9 1
CGTOI 8 81 111111110011010011110101101111110100

110111111011011101100110111011111011
11111111 0.75 10 1

CGT02 25 43 111111110011111110011011011011011111
111111 0.81 11 1

CGT04 20 49 111111111101111111011111101111111111
I I 1 111111111111 0.94 22 1

1*: Number of consecutive iterations where Bk was positive definite immediately prior
to the termination of the algorithm.
2*: Number of iterations where the SR1 update is skipped because condition (4.1) was

violated.
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Table A8 (continued)
f(x) n Itr 0: Indefinite ; 1: Positive Definite %pd 1* 2*
CGT05 20 180 111111111011111011111111111101110111

1111111111111010111101111111110111
111111110111011010001110111111101111

111111111010111111011011111001110111

11111111111110111111111111111111111 0.87 21 1
CGT07 8 116 111111111111111110111111101000011011

010010011111101011010011011101111011
011111111111111101111011110110111111
1111111 0.78 13 1

CGTO8 8 140 111111110110111110111011111101101101
111110011011111101101110011011110100
110110000000011110111111001110100111
1110110011010011011111010111111 0.70 6 1

CGT1O 30 40 111111111111111111111111101111111111
001 0.92 1 1

CGT11 30 32 1111011101111111110111011111111 0.87 8 1
CGT12 30 199 111111111110111111110110111101111111

111110110111110111011101110111110111
011111111110111011111101100111111010
110011111111111010101101111111101011

101111110011111011111110110011011111
110101011101111101 0.80 1 1

CGT14 30 100 111010111110111011101110011110110111
111111101110111101101111111010101111
111111111111110111111111111 0.83 12 1

CGT16 10 11 1111111111 1.00 10 1
CGT17 8 92 111111011111111101111110111101101111

011111100111111111101111101111111101
1111111110111111111 0.87 9 1

CGT21 20 11 1110101111 0.80 4 1

1*: Number of consecutive iterations where Bk was positive definite immediately prior
to the termination of the algorithm.
2*: Number of iterations where the SR1 update is skipped because condition (4.1) was

violated.
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